
 32

  
Abstract— Prediction of time series data for 

chaotic and web driven business transactions. 
Prediction technologies: linear regression, 
artificial neural networks, genetic algorithms and 
Quacol algebra. Dilemma in prediction technique: 
functional or stochastic model. Fit composition of 
prediction functions – Quacol predictor model. 
Elaboration on rank exclusivity, on continuity of n-
point graph and theorem on sign independent 
algebraic operations. Practical prediction data 
from chaotic behavior in a ferroresonant circuit. 
Elaboration on prediction of web driven trading 
process. Modeling prediction error in Quacol 
algebra using triangle inequality. 
 

Index Terms— explicit model, qualitative 
algebra, prediction model, rank exclusivity, rank 
continuity 
 

I. INTRODUCTION 
REDICTION is usually treated through 
probabilistic Bayes formula. If we know the 

probability of outcome B and the joined 
probability of occurrence of both the outcomes A 
and B, we can calculate the conditional 
probability that outcome B occurs if outcome A 
has occurred [1].  That is a simple and powerful 
set-based prediction method. Although 
probability of such an outcome relies on past 
data it is bravely hypothesized that the 
continuation of the past can be predicted by 
modeling. In most crucial cases where prediction 
is pragmatically sought this condition is not 
fulfilled. Two schools of prediction philosophy are 
usually followed: those using stochastic or those 
using functional patterns of previous data 
behavior. There are odds in favor of each one of 
them. We will make a model of the data behavior 
using different techniques based on algebraic 
construction of various data-based analytical 
prediction forms. 
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This work consists of: comparison of linear 
and nonlinear models, case of chaotic data 
prediction, comparison between deterministic 
chaos and business transactions, introduction to 
prediction technologies: artificial neural 
networks, genetic algorithms and circular 
qualitative correlation algebra (Quacol algebra) 
[2]. Prediction by a fit composition of analytical 
functions in Quacol algebra will be given in more 
detail as the focus of this work. Results are also 
given by prediction of data from a chaotic 
ferroresonant circuit and from a web driven 
trading process. Analyses of the prediction error 
from the standpoint of sampling interval, 
correlation and prediction time horizon are 
discussed. Also, a pragmatic modeling method 
for prediction error in Quacol algebra and the 
consistency of error is defined. 

The organization of this work is as follows: 
Chapter 2 deals with different prediction methods 
and chapter 3 presents the results of prediction 
in several applications. Chapter 4 shows the 
approach for estimating prediction error in 
Quacol algebra. 

1. PREDICTION MODELING TECHNOLOGIES 

2.1 Linear and Nonlinear Models 
The most simple prediction model is a linear 

autoregression model. Here the future kx  
component of the signal is given with the 
expression 

 
1

     (1)
i

k i k i kx x wα −= +∑  

where: 

k ix − -  signal component determined in the i-th 
previous prediction interval 

kw - unknown white noise component at the 
prediction instant (assumed normal distribution) 

iα - coefficients of the time series expansion of 
previous time instants. 

Standard error of estimation, used in 
prediction, is given by: 
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where n is the number of samples, k is the 

number of preceding values of observed value xi, 
xi' are the theoretically predicted values. 

This model is still in use for various technical 
estimations and prediction purposes such as 
given in [3] and [4]. Different approach is 
presented by Fox and coauthors who considered 
a prediction method using regression analysis 
and artificial neural network [5]. Using long term 
data the system predicts weather from three 
days to 15 months in advance with typical 
accuracy of weekly weather forecasts around 
70%. Using correlation of previous weather data 
and POS store transactions data the system 
advises retailer on the managerial actions to be 
taken. In such a way hidden patterns of weather 
behavior have been pre-selected by the ANN.  

In order to generate patterns in advance the 
method has been proposed by Koza [6] whereby 
a composition of problem solving entities has 
been generated and combined in a genetic 
algorithm version of the problem solution. Such a 
combination of functions can be used for training 
of the prediction possibilities which was not 
developed by the above mentioned author. Still 
genetic algorithms can be used for constructing 
models fit for prediction. 

Models of chaotic processes are the most 
difficult for prediction because of their dynamic 
nonlinearity. Diambra [7] has proposed the 
equation for sampling width, prediction horizon, 
and functional for a chaotic process, but without 
stating neither the horizon accuracy nor the 
functional nature. Perlovsky [8] on the other hand 
advocates functional approach to modeling 
unknown processes in the nature and human 
activities. 

 

2.2 Quacol (Qualitative Correlation) Algebra 
Predictor 

 
2.2.1. Qualitative Explicit Model 

    Qualitative data in Quacol algebra approach 
can be obtained from quantitative data by a 
simple ranking procedure. The positive ranking 
assignment is applied to a set of variables. When 
ranked, these variables are called n-point graphs 
(or n-graphs) in Quacol algebra. The ranking is 
usually performed on a set of time series data, 
however, the ranking can be applied to any 
quantitative variable. For example, a 
measurement vector 1ν = (3.69, 7.15, 4.37, 

15.73, 0.18) is transformed into its corresponding 
n-point graph 1V  = (4, 2, 3, 1, 5), a 2ν  to 2V etc. 
Any desirable variable that is investigated can be 
defined as goal function, e.g. 1g = (27.97, 10.06, 
15.28, 37.66, 0.12) is transformed into the 
corresponding goal n-point graph 1G  = (2, 4, 3, 
1, 5). Spearman rank correlation coefficient for 
ordinal variable equals to [9]: 
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where 2Δ∑ equals the sum of correspondent 

squares of rank differences for two n-point 
graphs, Thus for the illustrated series 

6.0
11, =GVρ

.  
The selection performed according to (3) from 

a greater number of variables and their inverses 
results in an n-point graph with the highest rank 
correlation coefficient. Difference in ranks 
between this n-point graph and the goal function 
n-point graph is used to generate another 
artificial goal function to be entered as the 
algebraic counterpart of the missing rank 
difference, i.e. this is a rank difference between 
goal function and model variable, equal to  

1 1 2( ) ( 2, 2, 0, 0, 0) ,    (4)improperG V gΔ − = − =
      

where the subscript “improper” designates 
rank difference function, i.e. the value that has 
not been yet properly ranked. After shifting (4) by 
adding a positive constant vector such 
as ( )3,3,3,3,3ν = , the corresponding 

quantitative function 2 (1,5,3,3,3)g = can be 

obtained. Mixing 2g  values with a small 
positively defined strictly increasing additive 
„background noise” 

(0.01, 0.02, 0.03, 0.04, 0.05)η = and after 
ranking one obtains the proper difference goal 
function 2 (1,5,2,3,4)nG = . 

After that the following relations hold, adapted 
from [10]: 

)( 11 ikvvRscorrespondG + , 

2( ),     (5)i nv corresponds R G   
where R(.) is the already explained rank 

operator and the corresponds operator first 
searches the most  similar variable vi according 
to its ranks to the corresponding 2nG  goal 
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function ranks. After vi has been found according 
to maximum of rank correlation coefficient 
amount (3), then a search for k is performed 
such that it minimizes the difference between the 
ranks of the sum 1( )iv kv+  and G1.  
 
2.2.2. Quacol Algebra 

Two principles of modeling in Quacol algebra, 
such as given for example in equation (5), have 
to be adopted:  

First is the principle of rank exclusivity which 
states that any n-point graph should not have 
any equal ranks, e.g. (1, 2, 3.5, 3.5, 5)kV = is 
not allowed. Rank correlation coefficient for 
equally ranked values would have to be 
calculated using an adapted formula [9,ibid], 
which is generally not used because of 
somewhat higher calculation demand for longer 
data series .  

The second is the principle of continuity of the 
n-point graph for specific algebraic operations of 
multiplication and division. The formal definitions 
follow. 

Definition 1. (Rank exclusivity) 
The rank values of two values in any n-point 

graph or goal function are not allowed to be 
equal, i.e. ( ( )) ( ( )), ,i iR v j R v k i j k≠ ∀ ≠ . 

The possible equal data in any variable are 
solved by the addition of a very small amount of 
noise to each data in each variable, and 
theoretically to each variable pair. The addition of 
noise enforces the distinction of values, with the 
price being the decrease in determinism of 
models with highly similar variable values and 
the gain is the ability to rank the values more 
efficiently.  

Definition 2. (Continuity of n-point graph) 
Any algebraic operation between any two 

variables can not influence on the rank continuity 
of any particular variable.  

This is a fundamental demand that changes 
the multiplication and division operation in 
Quacol algebra where the operations are defined 
according to Table 1. The proof of result from 
Table 1 is fairly simple: it stems from a theorem 
in Quacol algebra that states: 

Theorem 1. (Sign independent algebraic 
operations) If the multiplication and division 
operations in Quacol algebra are defined 
according to Table 1, then the ranking operation 
performed on variables in positive domain is the 
same as one performed on variables with no 
restrictions on the domain, i.e., 

     ,))()(()( 221121 cvopcvRvopvR ++=  
if 1 1( ) 0iv c+ > and

2 2( ) 0, 0, , , ,     (6)i xi xi xjv c c c c i j+ > > = ∀
 

where { }, ,*, /op = + −  is executed upon 

vector components and xc  are constant vectors. 
For example, let us take two variables: 

)2,4,3,1();1,5,4,5.2( 11 =−−= Vv  
and 2 2( 3, 4,2,3); (3,4,2,1)v V= − − = .  

If we perform multiplication 1 2v v according to 
Table 1 and rank the result, we obtain: 

)1,3,4,2()3,10,16,5.7()( 21 =−−−= RvvR . 
If we apply the traditional definition of 

multiplication operation, we would obtain: 
)2,4,1,3()3,10,16,5.7(')(' 21 =−−= RvvR . 

We perform a “lifting” operation upon variables 

1v  and 2v  such that we translate their values 
into

 
 TABLE 1: MULTIPLICATION AND DIVISION OPERATIONS IN QUACOL ALGEBRA 

 

213 vvv =  or 2

1
3 v

vv =
 

01 ≥iv  01 <iv  

02 ≥iv  03 ≥iv 03 <iv  
02 <iv  03 <iv 03 <iv  
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the positive domain, e.g. 

1 (6,6,6,6) (8.5,2,1,7)v + = and

2 (5,5,5,5) (2,1,7,8)v + = . We than perform the 
same multiplication operation upon these altered 
variables and rank them. Thus, we obtain: 

1 1 2 2( )( ) (17,2,7,56)v c v c+ + = and

(17,2,7,56) (2,4,3,1)R = . 
This is the same result as without raising the 

variables’ values into the positive domain.  
It should be again noted that it is irrelevant 

whether we perform the alteration of the 
variables and calculate them in positive domain 
or we use the special rules for multiplication and 
division according to Table 1, because the end 
result is the same. Caution has to be exerted on 
the values of the variables if standard operations 
are used, because their values would have to be 
positive in that case. 

 
2.2.3. Quacol Predictor Model 

Let us define as the prediction goal function 
any desirable goal function (variable) kg of the 
depth n, where k is the total number of variables 
of a system, including the goal function, 
i.e.{ }, , 1, , 1k ig v i k= −K . Goal model can then 

be expressed as:  
 

{ } { } { }, ,
, , ( )

, , , (7)
k

ord inv ord inv
g m i m j m mm mean m

M op v v op k⎡ ⎤= ⎣ ⎦
where { }m

op  is a sequence of m algebraic 

operations performed on model in square 

brackets, with respect to theorem 1; { },
,

ord inv
m iv is 

the first variable in the m-th model, with index i, 
1, , 1i k= −K , that may or may not have 

inverted values; { },
,

ord inv
m jv is the second variable in 

the m-th model, with index j, 1, , 1j k= −K ; 

mop is the algebraic operation between i-th and j-

th variable and mk  is the weight of the second 
variable. All of the operations are performed on 
the variables that have been normalized to a 
common mean value for that model, denoted by 

)(mmean . 
An example of the model is: 

( )[ ]
( )[ ] 232

121
4 25.0

5.0

mean

mean
g vinvv

vinvv
M

−
+

=
. 

In circular Quacol algebra, Mg4 could be 

declared as a new variable and entered into the 
next cycle of goal estimation [10].  

By using a prediction vector 1nx +  we can 

predict a future value of kg  when 1nx +  is added 
as a last component to each 

, 1, , 1iv i k= −K (all of the variables except gk), 

thus
1,( )

k nk g xpredictor g M
+

= . 

Number of iterations following the procedure 
described under expression (7) is sometimes 
limited due to numeric instability of the procedure 
because of repetitious increase of the 
differences and mean values in the algebra [11]. 

2. PRACTICAL INVESTIGATIONS 
Predictor limits were tested under following 

unfavorable conditions:  
In chapter 3.1, there was only one system 

variable and that one had to be predicted from its 
past values. This is illustrated for the voltage 
signal of the ferroresonant circuit [12].  

In chapter 3.2, the time horizon was tested for 
small variable set, 4k = , the case of trading 
variable prediction. 

In chapter 3.3, the prediction precision was 
tested for different prediction interval d  for small 
trading variable set, 4k = .  

 

3.1. Predicting Chaotic Behavior of the 
Ferroresonant Circuit 

Synthetic functions have been used such as 

1 2k kv v− − or 1kv − or similar analytical forms, by a 

win – lose method. 
Prediction data for ranks of the ferroresonant 

circuit are given in Table 2. Mean prediction error 
of the linear model was around 277% and the 
mean prediction error of the Quacol synthesized 
predictor was around 108%. The actual voltage 
levels were between -0,1969V and 0,3464V. The 
worst case for linear predictor was predicting 
2.5929V instead of 0.00825V and the worst case 
of the Quacol predictor was predicting the value 
between -0.0176 and 0.024V instead of 
0.01892V.  

 

3.2. Determining the Prediction Horizon For 
Small Number of Trading Variables  

Four trading variables were observed: 
opening, 
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TABLE 2:  PREDICTION RANKS AND RANK RANGES FOR THE FERRORESONANT CIRCUIT IN CHAOTIC BEHAVIOR [10] 
 
 T

1 
T

2 
T

3 
T

4 
T

5 
T

6 
T

7 
T

8 
T

9 
T

10 
T

11 
T

12 
T

13 
T

14 
T

15 
T

16 
T

17 
T

18 
Goal 

rank 
1 2 5 7 8 9 1

0 
1

1 
1

2 
1

3 
1

4 
1

6 
1

7 
1

8 
1

5 
6 4 3

Quac
ol 

model 
rank 

2 1 5 8 6 9 1
0 

1
1 

1
2 

1
3 

1
4 

1
6 

1
7 

1
8 

1
5 

7 3 4

Linea
r model 

Rank 

3 2 1 1
6 

6 9 1
2 

7 1
0 

1
1 

1
3 

1
4 

1
5 

1
7 

1
8 

5 1 4

Quac
ol 
model 
rank 

range 

1
-3 

1
-3 

4
-6 

6
-9 

5
-9 

8
-
10 

9
-
11

1
0-
12 

1
1-
13 

1
2-
14 

1
3-
15 

1
5-
17 

1
6-
18 

1
7-
>1
7 

1
4-
16 

5
-8 

2
-5 

3
-5 

TABLE 3:  TRADING FORECAST FOR TEN CASES OF THE „OPENING“ VARIABLE 
 
Case 1 2 3 4 5 6 7 8 9 10 
Predict

ed 
value 

<21
05 

285
-325 

585
-605 

>94
5 

225 >20
5 

385
-415 

605
-615 

885
-905 

385
-415 

Predicti
on class 

B A A B C A C A A B 

Actual 
value 

199
5 

325 595 985 235 225 375 605 895 435 

 
 
closing, high and low values of a stock market 
index. The intervals of scanning were one hour 
and the time duration was 24 hours. The 25-th 
value was predicted with varying accuracy, Table 
3, for ten different trading situations (last three or 
four digits were given). Synthetic analytical 
variables were not used, because multivariable 
case is less sensitive to such improvements. 
Prediction class is formed according to rank 
correlation coefficient span: A>0.99, B (0.97-
0.99) and C (0.95-0.97).  When the horizon was 
extended to two-hour periods the correlations 
have decreased to the values between 0.70 and 
0.80 (prediction class F) or smaller thus 
decreasing the prediction accuracy.  

 

3.3. Prediction Accuracy For Small Number of 
Prediction Variables and Different Variable 
Lengths 

Two cases have been studied: accuracy of 
n=25 data series and n=75 data series. Data on 
shorter model showed overall accuracy around 
20% and are not considered here. We present 
the results for the longer data series. A resulting 
model n-point graph for a 75 days period is given 
in Figure 1. Data on prediction accuracy are 

given in Table 4. When we predicted the value 
for two days horizon, we took every second day 
in consideration, and for three days, every third 
day was taken. Table 4 shows that when one 
increases the prediction horizon, the error also 
shows a geometric increase. Obviously, it is 
more difficult to predict the value of a stock for 
more than one day in advance.  

4. PREDICTION ERROR MODELING 

Goal 1G and goal difference functions G2n are 
linear independent variables, meaning that they 
are principally collected from mutually inverse 
variables and calculated in geometric way 
toward goal function fulfillment. 

A relative error of predictive model m in 
Quacol algebra is calculated using standard 
formula: 

( ) ,     (8)calc real

real

x xError m
x
−

=  

where calcx is the average value of the rank 
interval for the goal variable, i.e. "Predicted 
value" in Table 3, realx is the real value of the 
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goal variable. 
Finally, we define the consistency of an error 

of prediction in Quacol algebra. 
Definition 3. (Error consistency)  
An error in prediction ( )Error m  using Quacol 

algebra is consistent if for each model member 
of the n-point graph ( 1v ) and for every successor 

variable n'-point graph ( 1
2 1v v−= ) obtained 

from its difference toward the goal function g, the 
estimated error of reaching the goal from n-point 
graph is no greater than the error of obtaining 
the goal from getting to n' plus the estimated 
error of reaching the goal from n' (triangle 
inequality):  

 

1 2( ) ( ) ( ),    (9).Error m Error v Error v≤ +    

 

Figure 1. Model rank graph for 75 days period, yellow is the goal variable (opening), red is the  
model. MODEL(opening) = high + 0.90low 

 
TABLE 4.  75, 38 AND 25 PERIODS PREDICTION DATA FOR ATPL STOCK ON THE CROATIAN STOCK MARKET* 

 
Variable Predictio

n 
Real 

value 
Variable 

span 
Relative 

error 
Correlati

on 
coefficient 

Predictio
n horizon 

Opening 
(76) 

906-910 910 872-925 -3,78% 0.88 1 day 

Opening 
(39) 

906-906 909,99 872-925 -7,53 % 0.84 2 days 

Opening  
(26) 

901-901 909,99 872-925 -16,96 % 0,88 3 days 

* Data for spring 2007 period;  
 

5. DISCUSSION 
Prediction accuracy and correlation of 

models are highly connected. It can be 
observed from (9) that prediction error is lower 
in simpler models, although the error is not 
additively growing with the model complexity. 
Ideally for 100 equidistant values and 
completely discovered goal function the 
accuracy is of the order of 1 %. Realistic 
expectations are far less favorable. Neither 
there are long enough data series that are 
without large chaotic behavior nor are any 
linearity in the goal data distribution. 
Widespread chaotic behavior lowers prediction 
accuracy while lowering model correlation. 
Ranking operation is insensitive to 
irregularities in data scales, but they differ 
significantly in value changes. Predicting from 
ranks is much more accurate for linear case. 
Still predictions of smaller data series (>25 

data series) can be expected with about 10% 
accuracy which can be favorable for many 
practical applications on the web. There 
remains the task of more formal proof of 
theorem 1 and the elaboration of correlation in 
prediction error of single-variable systems. 
Errors in such systems are not statistically 
independent in respect to variable sampling 
and analytical operations.  
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